Part Number Hot Search : 
OB2358 SEL6027 MC14027 002E8 D8NM6 00MHZ 00MHZ A64AD
Product Description
Full Text Search
 

To Download MD2203 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet 1 data sheet, rev. 3.7 91-sr-002-42-8l diskonchip ? 2000 dip from 16mbyte to 1gbyte highlights diskonchip 2000 dip is a member of m-systems? family of diskonchip flash disk products. it is available in capacities of 16mbyte to 1gbyte. note: the following abbreviation is used in this document: mb for mbyte, gb for gbyte. diskonchip 2000 dip features: single-chip plug-n-play flash disk low power, single 3.3v or 5v power supply 16mbyte (mb) to 1gbyte (gb) capacity simple, easy-to-integrate interface 8kb sized memory window boot os capability proprietary trueffs ? technology for full hard disk emulation, high data reliability and maximum flash lifetime software tools for programming, duplicating, testing and debugging reliability on-the-fly reed-solomon error detection code/error correction code (edc/ecc) guaranteed data integrity, even after power failure transparent bad block management dynamic and static wear-leveling trueffs software full hard-disk read/write emulation for transparent file system management identical software for all diskonchip capacities patented methods to extend flash lifetime, including: o dynamic virtual mapping o dynamic and static wear-leveling support for all major oss, including: vxworks, windows ce/.net, linux, windows nt/xp, qnx and others. operates with trueffs so ftware development kit (sdk) in os-less environment. hardware compatibility 32-pin dip, jedec standard, eeprom-compatible pinout pinout compatible with diskonchip millennium dip 8mb compatible with all major cpus, including: x86 strongarm xscale geode ? scxxxx powerpc? mpc8xx mediagx 68k mips superh? sh-x 8-bit, 16-bit and 32-bit bus architecture support applications embedded systems internet access devices internet set-top boxes/itv, web browsers wbt, thin clients, network computers routers, networking web phones, car pcs, dvd, hpc point of sale, industrial pcs telecom, medical capacities low profile: 16, 24, 32, 48, 64, 96, 128, 192, 256, 384mb high profile: 576, 768, 1024mb commercial (0c to 70c) and extended temperature range (-40c to +85c) for all capacities
diskonchip 2000 dip data sheet 2 data sheet, rev. 3.7 91-sr-002-42-8l table of contents 1. introducti on .......................................................................................................... 4 2. product over view................................................................................................. 5 2.1 product de scription............................................................................................................ ......... 5 2.2 i/o operation.................................................................................................................. ............. 6 2.3 pin diag ram .................................................................................................................... ............ 6 2.4 signal desc ripti ons ............................................................................................................ ......... 7 3. theory of operation ............................................................................................. 8 3.1 overview ....................................................................................................................... .............. 8 3.2 system in terface ............................................................................................................... .......... 8 3.3 boot block ..................................................................................................................... .............. 8 3.4 error detecti on code/error co rrection code (edc/ecc) .......................................................... 9 3.5 flash c ontrol.................................................................................................................. ............. 9 4. operating modes .................................................................................................. 9 5. trueffs tec hnology.......................................................................................... 10 5.1 general de scription ............................................................................................................ ...... 10 5.1.1 built-in operating system s upport........................................................................................ 10 5.1.2 trueffs software develo pment kit (sdk)........................................................................... 11 5.1.3 file mana gement................................................................................................................ ... 11 5.1.4 bad-block m anagement ........................................................................................................ 11 5.1.5 wear-leveling .................................................................................................................. ..... 11 5.2 power failure management...................................................................................................... 1 2 5.2.1 error detecti on/correction..................................................................................................... 12 5.2.2 special features through i/o control (ioctl) mechanism .................................................. 12 5.2.3 compatib ility .................................................................................................................. ........ 12 5.3 8kb memory window .............................................................................................................. .13 6. booting from di skonchip 2000 ........................................................................ 14 6.1 introduction ................................................................................................................... ............ 14 6.2 boot procedure in pc-c ompatible platforms ........................................................................... 14
diskonchip 2000 dip data sheet 3 data sheet, rev. 3.7 91-sr-002-42-8l 7. design consid erati ons ...................................................................................... 15 7.1 design envi ronment............................................................................................................. ..... 15 7.2 system in terface ............................................................................................................... ........ 16 7.3 connecting signals ............................................................................................................. ...... 16 7.4 platform-specific issues ....................................................................................................... .... 17 7.4.1 wait state ..................................................................................................................... ......... 17 7.4.2 big and little endi an systems............................................................................................... 17 7.4.3 working with 8/16/ 32-bit systems......................................................................................... 17 8. product specifi cations ...................................................................................... 18 8.1 environmental s pecifications................................................................................................... .18 8.1.1 temperature ranges ............................................................................................................ 1 8 8.1.2 diskonchip assembly........................................................................................................... 1 8 8.1.3 humidity....................................................................................................................... .......... 18 8.1.4 shock and vi bration ............................................................................................................ .. 18 8.2 electrical sp ecifications ...................................................................................................... ...... 18 8.2.1 absolute maximu m ratings................................................................................................... 18 8.2.2 capacitance.................................................................................................................... ....... 18 8.2.3 dc electrical characteristic s over operat ing ra nge ............................................................ 19 8.2.4 ac operating condition s....................................................................................................... 2 0 8.3 timing specif ications .......................................................................................................... ...... 21 8.3.1 read cycl e timi ng .............................................................................................................. .. 21 8.3.2 write cycl e timing ............................................................................................................. ... 22 8.4 mechanical dimensions .......................................................................................................... .. 23 9. ordering info rmation ......................................................................................... 24
diskonchip 2000 dip data sheet 4 data sheet, rev. 3.7 91-sr-002-42-8l 1. introduction this data sheet includes the following sections: section 1: overview of data sheet contents section 2: product overview, including brief product description, a pin diagram and signal descriptions section 3: theory of operation for the major building blocks section 4: modes of operation section 5: description of trueffs technology section 6: using diskonchip 2000 dip as a boot device section 7: design considerations for implementing popular applications and for maximizing built-in flexibility features section 8: environmental, mechanical, electri cal and production specifications to contact m-systems? worldwide offices for general information and technical support, please see the listing on the back page, or visit m-systems? website ( www.m-sys.com ).
diskonchip 2000 dip data sheet 5 data sheet, rev. 3.7 91-sr-002-42-8l 2. product overview 2.1 product description the diskonchip 2000 product line is the second-generation of m-systems? diskonchip series of products. the diskonchip 2000 series provides a sma ll, single-chip, solid-state flash disk in a standard 32-pin dip package. combining a disk controller with flash memory on a single chip, diskonchip 2000 is the solution where minimal weight, space, and power consumption are e ssential. diskonchip 2000 is used in a wide range of products, such as information appliances, set-top boxes, thin clients, thin servers, network computers, and embedded, portable computers. by placing diskonchip 2000 in a stan dard socket, physical space requireme nts are reduced. unlike standard ide drives, no cables or extra space are required. diskonchip 2000 has no moving parts, resulting in significantly decreased power consumption and increased reliability. it is easy to use and reduces integration overhead. diskonchip 2000 is therefore a very attractive alternative to conventional hard and floppy disk drives. using trueffs technology, diskonchip 2000 delivers full hard disk emulation. as such, the design and integration stages can be considerably reduced, thereby enabling very fast time-to-market and ease of production. combined with its very attractive cost structure, diskonchip 2000 is a superior alternative to resident flash array (rfa). diskonchip 2000 products are available in capacities rang ing from 16mb to 1gb. in addition, they are 100% pinout and software compatible with the diskonchip millennium dip 8mb package. in future versions, the capacity will increase (up to 4gb during 2003). since the same pinout will be retained, the socket on the target platform will not have to be changed to accommodate the larger capacities. diskonchip technology provides broad support for all major operating systems and processors in the market, enabling it to be readily integrated with any architecture. diskonchip 2000 is shipped as a plug-and-play device that is fully tested and formatted, and programmed with a dos driver. future driver, software or content upgrades, or formatting, can be made on-board or off-board using diskonchip utilities and accessori es provided by m-systems.
diskonchip 2000 dip data sheet 6 data sheet, rev. 3.7 91-sr-002-42-8l 2.2 i/o operation see figure 1 for a simplified i/o diagram. oe# ce# d[7:0] we# diskonchip 2000 a [12:0] figure 1:simplified i/o diagram 2.3 pin diagram diskonchip 2000 dip 4 5 6 7 8 9 10 11 12 14 15 16 13 1 2 3 29 28 27 26 25 24 23 22 21 19 18 17 20 32 31 30 nc nc nc a12 a7 a6 a5 a4 a3 a2 a1 a0 d0 d1 d2 vss vcc we# nc nc nc a8 a9 a11 oe# a10 ce# d7 d6 d5 d4 d3 figure 2: package description and pinout
diskonchip 2000 dip data sheet 7 data sheet, rev. 3.7 91-sr-002-42-8l 2.4 signal descriptions signal pin number input type description signal type system interface a[12:0] 4 to 12, 23, 25 to 27 st address signals. input d[7:0] 13 to 15, 17 to 21 in data signals. input/ output ce# 22 st chip enable, active low input oe# 24 st output enable, active low input we# 31 st write enable, active low input power vcc 32 - device supply supply vss 16 - ground supply other nc 1, 2, 3, 28, 29, 30 - not connected. these pins should be left floating. absolute maximum ratings must be observed. the following abbreviations are used: in standard (non-schmidt) input st schmidt trigger input
diskonchip 2000 dip data sheet 8 data sheet, rev. 3.7 91-sr-002-42-8l 3. theory of operation 3.1 overview diskonchip 2000 consists of the following major functional blocks, as shown in figure 3: ? system interface for host interface. ? boot block that contains ipl rom required for recognition du ring bios expansion search in pc architectures. ? reed-solomon-based erro r detection and error co rrection code (edc/ecc) for on-the-fly error handling. ? flash control block that contains registers responsible for tr ansferring the address, data and control information between the trueffs driver and the flash media . flash flash control system interface ce# we# oe# d[0:7] boot block (ipl rom) a[0:12] edc/ecc figure 3: diskonchip 2000 simplified block diagram 3.2 system interface the system interface block provides an easy-to-integ rate sram-like (also eeprom-like) interface to diskonchip 2000, enabling it to in terface with various cpu interfaces, su ch as a local bus, isa bus, sram interface, eeprom interface or any other compatible interface. a 13-bit wide address bus enables acces s to the diskonchip 8kb memory wi ndow (as shown in figure 5). the chip enable (ce#), write enable (we#) and output enab le (oe#) signals trigger read and write cycles. a write cycle occurs while both the ce# and the we# inputs are asse rted. similarly, a read cycl e occurs while both the ce# and oe# inputs are asserted. note that diskonchip 2000 does not require a clock signal. the ce#, we# and oe# signals trigger the controller (e.g., system interface block, bus control and data pipeline) and flash access. 3.3 boot block the boot block is responsible for answering the bios expansion search in pc architectures. after the bios identifies diskonchip 2000 as a valid bios expansion device, it executes the code stored in the boot block. the bios then loads the trueffs software from the flash memo ry into the host memory, delivering full disk capabilities to the operating system. this code is identical for a ll diskonchip 2000 capacities, since trueffs automatically detects the memory capacity of diskonchip 2000.
diskonchip 2000 dip data sheet 9 data sheet, rev. 3.7 91-sr-002-42-8l 3.4 error detection code/error correction code (edc/ecc) nand flash, being an imperfect memory, requires error handling. diskonchip 2000 implements reed-solomon error detection code (edc). a hardware-generated, 6-byte error detection signature is computed each time a page (512 bytes) is written to or read from diskonchip 2000. the trueffs driver implements complementary error co rrection code (ecc). unlike error detection, which is required on every cycle, error corr ection is relatively seldom required, hence implemented in software. the combination of diskonchip?s built-in edc mechanism a nd the trueffs driver ensures highly reliable error detection and correction, while providing maximum performance. the following detection and correction capability is provided for each 512 bytes: ? corrects up to two 10-bit symbols, including two random bit errors. ? corrects single bursts up to 11 bits. ? detects single bursts up to 31 bits and double bursts up to 11 bits. ? detects up to 4 random bit errors. 3.5 flash control the flash control block contains registers responsible for transferring the address, data and control information between the diskonchip trueffs driver and the flash media. additional registers are used to monitor the status of the flash media (ready/busy) and of the diskonchip controller. 4. operating modes diskonchip 2000 can operate in two modes: ? normal mode: the device responds to every valid hardware cycle. while in this mode, all sections respond to valid read and write cycles. ? reset mode: the device ignores all write cycles (exc ept for the ?leave reset mode? sequence), and returns pre-determined values for all read cycles. mode changes can occur due to any of the following events: ? a valid write sequence to the control register ? triggering the boot detector circuit, which enables automatic driver loading in a pc environment.
diskonchip 2000 dip data sheet 10 data sheet, rev. 3.7 91-sr-002-42-8l 5. trueffs technology 5.1 general description m-systems? patented trueffs technology was designed to maximize the benefits of flash memory while overcoming inherent flash limitations th at would otherwise reduce its performance, reliability and lifetime. trueffs emulates a hard disk, making it completely transparent to the os. in addition, since it operates under the os file system layer (see figure 4), it is completely transparent to the application. figure 4: trueffs location in system hierarchy trueffs technology support includes: ? binary driver support for all major oss ? trueffs software de velopment kit (sdk) ? boot software development kit (bdk) ? support for all major cpus, including 8-, 16- and 32-bit bus architectures trueffs technology features: ? block device api ? flash file system management ? bad-block management ? dynamic virtual mapping ? dynamic and static wear-leveling ? power failure management ? implementation of reed-solomon edc/ecc ? performance optimization ? compatible with all diskonchip products 5.1.1 built-in operating system support the trueffs driver is integrated into all major oss, in cluding: windows ce/nt/nt embedded/xp, linux (various kernels), vxworks, nucleus, qnx, dos, symbian and others . for a complete listing of all available drivers, please refer to m-systems? website http://www.m-sys.com. it is ad vised to use the latest driver versions that can be downloaded from the diskonchip 2000 web page on the m-systems site. application os file system trueffs diskonchip
diskonchip 2000 dip data sheet 11 data sheet, rev. 3.7 91-sr-002-42-8l 5.1.2 trueffs software development kit (sdk) the basic trueffs software development kit (sdk) provides the source code of the trueffs driver. it can be used in an os-less environment or when special customiza tion of the driver is required for proprietary oss. 5.1.3 file management trueffs accesses the flash memory within diskonchip 20 00 through an 8kb window in the cpu memory space. it provides block device api, by using standard file system calls, identical to those used by a mechanical hard disk, to enable reading from and writing to any sector on diskonchip 2000. this makes it compatible with any file system and file system utilities such as diagnostic tool s and applications. when using the file allocation table (fat) file system, the data stored on diskonchip 2000 uses fat-16. note: diskonchip 2000 is shipped formatted, and contains the fat file system. 5.1.4 bad-block management nand flash, being an imperfect storage media, contains some bad blocks that cannot be used for storage because of their high error rates. trueffs automatically detects and maps bad blocks upon system initialization, ensuring that they are not used for storage. this ma nagement process is completely transp arent to the user, who remains unaware of the existence and location of bad blocks, while remaining confident of the integrity of data stored. the bad block table in diskonchip 2000 dip is stored in a protected area for ensured reliability. 5.1.5 wear-leveling flash memory can be erased a limited numb er of times. this number is called the erase cycle limit or write endurance limit and is defined by the flash array vendor. the erase cycle limit applies to each individual erase block in the flash device. after reac hing the cycle limit, as given by the flash vendor, the erase block begins to make storage errors at a rate significantly higher than the error rate that is typical to the flash. in a typical application and esp ecially if a file system is used, a specific page or pages are constantly updated (e.g., the page/s that contain the fat, registry etc.). without any special handling, these pages would wear out more rapidly than other pages, reducing the lifetime of the entire flash. to overcome this inherent deficiency, trueffs uses m-systems? patented wear -leveling algorithm. the wear-leveling algorithm ensures that consecutive writes of a specific sector are not written physically to the same page in the flash. this spreads flash media usage even ly across all pages, thereby maximizing flash lifetime. trueffs wear-leveling extends the flas h lifetime 10 to 15 years beyond the lifetime of a typical application. dynamic wear-leveling trueffs uses statistical allocation to perform dynamic wear-leveling on newly written data. this not only minimizes the number of erase cycles per block, it also mi nimizes the total number of erase cycles. because a block erase is the most time-consuming operation, dynamic wear-leveling has a major impact on overall performance. this impact cannot be noticed during the first write to flash (since there is no need to erase blocks beforehand), but it is more and more noticeable as the flash media becomes full.
diskonchip 2000 dip data sheet 12 data sheet, rev. 3.7 91-sr-002-42-8l static wear-leveling areas on the flash media may contain static files, characterized by blocks of data that remain unchanged for very long periods of time, or even for the whole device lifet ime. if wear-leveling were on ly applied on newly written pages, static areas would never be cycled. this limited application of wear-leveling would lower life expectancy significantly in cases where flash memo ry contains large static areas. to ov ercome this problem, trueffs forces data transfer in static areas as well as in dynamic ar eas, thereby applying wear-lev eling to the entire media. 5.2 power failure management trueffs uses algorithms based on ?erase after write? instead of "erase before write" to ensure data integrity during normal operation and in the event of a power failure. us ed areas are reclaimed for erasing and writing the flash management information into them only after an operation is complete. this pr ocedure serves as a check on data integrity. the ?erase after write? algorithm is also used to update and store mapping information on the flash memory. this keeps the mapping information coherent even during power failures. the only mapping information held in ram is a table pointing to the location of the actual mapping inform ation. this table is recons tructed during power-up or after reset from the information stored in the flash memory. to prevent data from being lost or corrupted, trueffs uses the following mechanisms: ? when writing, copying, or erasing the flash device, the data format remains valid at all intermediate stages. previous data is never erased until the operation has been completed and the new data has been verified. ? a data sector cannot exist in a partially written stat e. either the operation is successfully completed, in which case the new sector contents are valid, or the op eration has not yet been completed or has failed, in which case the old sector contents remain valid. 5.2.1 error detection/correction trueffs implements a reed-solomon error correction code (ecc) algorithm to ensure data reliability. refer to section 3.4 for further information on the edc/ecc mechanism. 5.2.2 special features through i/o control (ioctl) mechanism in addition to standard storage de vice functionality, the trueffs driver pr ovides extended functionality. this functionality goes beyond simple data storage capabilities to include features such as: format the media, binary partition(s) access, flash defragmentati on and other options. this unique functionality is available in all trueffs- based drivers through the standard i/o control command of the native file system. for further information, please refer to application note ap-doc-046 extended functions of the trueffs driver for diskonchip. 5.2.3 compatibility the trueffs driver supports all released diskonchip products. upgrading from one product to another requires no additional software integration. when using different drivers (e.g. trueffs sdk, bdk, bios extension firmware, etc.) to access diskonchip, the user must verify that all software is based on the same code base version. it is also important to use only tools (e.g. dformat, dinfo, getimage, etc.) derived from the sa me version as the firmware version and the trueffs drivers used in the application. failure to do so may lead to unexpected results, such as lost or corrupted data. the driver and firmware version can be verified by the sign-on messages displayed, or by the version information stored in the driver or tool.
diskonchip 2000 dip data sheet 13 data sheet, rev. 3.7 91-sr-002-42-8l 5.3 8kb memory window the memory map of the diskonchip 2000 occupies a total address space of 8kb. this space consists of four 2kb sections, as shown in figure 5and described below. ? section 0: boot block this section includes data that is typically used for booting code from the cpu. the available size is 64 bytes, aliased 32 times in the 2kb section. the second half of the boot block is located in section 2. ? section 1: boot block this section includes the second 64 bytes of the boot block. the first 64 bytes can be found in section 0, aliased 32 times. ? section 2: control registers used to control the behavior of the diskonchip 2000 and flash media. ? section 3: flash area window used as a window to the flash media for data to be written or read. boot block reset mode 000h 800h 1000h 1800h control registers section 0 section 1 section 2 section 3 normal mode flash area window 00h 00h boot block boot block boot block figure 5: diskonchip 2000 memory map
diskonchip 2000 dip data sheet 14 data sheet, rev. 3.7 91-sr-002-42-8l 6. booting from diskonchip 2000 6.1 introduction diskonchip 2000 can operate as the os boot device. the diskonchip default firmware contains drivers to enable it to perform as the os boot device under dos. for other oss, please refer to the trueffs driver readme file. 6.2 boot procedure in pc-compatible platforms when used in pc-compatible platforms, diskonchip 2000 is connected to an 8kb memory window in the bios expansion memory range, typically located between 0c8000h to 0effffh. during the boot process, the bios loads the trueffs firmware into the pc memory and installs diskonchip as a disk drive in the system. when the operating system is loaded, diskonchip is recognized as a standard disk. no external software is required to boot from diskonchip. figure 6 illustrates the location of the diskonchip 2000 memory window in the pc memory map. 8k 1m 640k 0 display ram 0c8000h bios 0b0000h 0f0000h 0fffffh diskonchip extended memory figure 6: diskonchip 2000 memory window in the pc memory map after reset, the bios code first executes the power on self-test (post) and then se arches for all expansion rom devices. when diskonchip 2000 is found, the bios code executes from it the ipl (in itial program loader) code, located in the boot block. this code loads the trueffs driver into system memory, installs diskonchip 2000 as a disk in the system, and then returns control to the bios code. the operating system subsequently identifies diskonchip 2000 as an available disk. trueffs responds by emul ating a hard disk. from this point onward, diskonchip 2000 appears as a standard disk drive. it is assigned a drive letter and can be used by any application, without any modifications to either the bios set-up or the autoexec.bat/ config.sys files. diskonchip 2000 can be used as the only disk in the system, with or without a floppy drive, and with or without hard disks. the drive letter assigned depends on how diskonchip 2000 is used in the system, as follows: ? if diskonchip 2000 is used as the only disk in the system, the system boots directly from it and assigns it drive c. ? if diskonchip 2000 is used w ith other disks in the system: o diskonchip 2000 can be configured as the last drive (the default configuration). the system assigns drive c to the hard disk and drive d to diskonchip 2000. o alternatively, diskonchip 2000 can be configured as the system?s first drive. the system assigns drive d to the hard disk and drive c to diskonchip 2000. ? if diskonchip 2000 is used as the os boot device when configured as drive c, it must be formatted as a bootable device by copying the os files onto it. this is done by using the sys command when running dos.
diskonchip 2000 dip data sheet 15 data sheet, rev. 3.7 91-sr-002-42-8l 7. design considerations 7.1 design environment diskonchip 2000 provides a complete design environment consisting of: ? evaluation boards (evb) for enabling software integr ation and development with diskonchip 2000, even before the target platform is available. an evb with an isa standard conn ector and a pci standard connector for immediate plug an d play usage are available. ? programming solutions: o gang programmer o programming house o on-board programming ? trueffs software development kit (sdk) and bdk ? dos utilities: o dformat o getimg/putimg o dinfo ? documentation: o data sheet o application notes o technical notes o articles o white papers please visit m-systems? website ( www.m-sys.com ) for the most updated documentation, utilities and drivers.
diskonchip 2000 dip data sheet 16 data sheet, rev. 3.7 91-sr-002-42-8l 7.2 system interface diskonchip 2000 uses an sram-like interface that can ea sily be connected to any microprocessor bus. with a standard interface, it requires 13 address lines, 8 data lines and basic memory control si gnals (ce#, oe#, we#), as shown in figure 7 below. typically, diskonchip 2000 can be mapped to any free 8kb memory space. in a pc-compatible platform, it is usually mapped into the bios expansion area. if the allocated memory window is larger than 8kb, an automatic anti-a liasing mechanism prevents the firmware from being loaded more than once during the rom expansion search. diskonchip 2000 address data output enable write enable chip enable vss 3.3v or 5v vcc d[7:0] oe# we# ce# a[12:0] 10 nf 0.1 uf figure 7: diskonchip 2000 system interface notes: 1. the 0.1f and the 10nf lo w-inductance high-frequency capacitors must be attached to each of the device?s vcc and vss pins. 2. diskonchip 2000 is an edge-sensitive device. ce#, oe# and we# should be properly terminated (according to board layout, serial parallel or both terminations) to avoid signal ringing. 7.3 connecting signals diskonchip 2000 uses standard sram-like control signals, which should be connected as follows: ? address (a[12:0]) ? connect these si gnals to the host address bus. ? data (d[7:0]) ? connect these signals to the host data bus. ? write (we#) and output enable (oe#) ? connect these signals to the host wr# and rd# signals, respectively. ? chip enable (ce#) ? connect this signal to the memory address decoder.
diskonchip 2000 dip data sheet 17 data sheet, rev. 3.7 91-sr-002-42-8l 7.4 platform-specific issues the following section describes hardware design issues. 7.4.1 wait state wait states can be implemented only when diskonchip 2000 is designed in a bus that supports a wait state insertion, and supplies a wait signal. 7.4.2 big and little endian systems powerpc, arm, and other risc processors can use either big or little endian systems. diskonchip 2000 uses the little endian system. therefore, byte d[7:0] is its least significant byte (lsb); bit d0 is the least significant bit within that byte. when connecting the diskonchip to a device that supports the big endian system, make sure to that the bytes of the cpu and the diskonchip match. note: processors, such as the powerpc, also change the bit ordering within the bytes. failing to follow these rules results in improper connection of the diskonchip an d prevents the trueffs driv er from identifying the diskonchip. 7.4.3 working with 8/16/32-bit systems the trueffs driver supports 8-bit, 16-bit, and 32-bit bus architectures. support fo r the 16-bit and 32-bit bus architectures, typically used in risc processors, can be achieved by using the lsb of the data bus as follows: ? for 16-bit address boundary shifts, shift the address lines by one , so that the host address line a1 connects to diskonchip 2000 address line a0, the host address line a2 connects to diskonchip 2000 line a1, and so on. ? for 32-bit address boundary shifts, shift the address lines by two , so that the host address line a2 connects to diskonchip 2000 address line a0, the host address line a3 connects to diskonchip 2000 line a1, and so on.
diskonchip 2000 dip data sheet 18 data sheet, rev. 3.7 91-sr-002-42-8l 8. product specifications 8.1 environmental specifications 8.1.1 temperature ranges ? commercial operating temperature: 0 oc to +70 oc ? extended operating temperature: -40 oc to +85 oc ? storage temperature: -50 oc to +85 oc 8.1.2 diskonchip assembly the diskonchip 2000 dip device is not hermetically sealed. therefore, it must be assembled after the pcb goes through its final rinse. assembling diskonchip 2000 prior to the rinse phase may cause it to absorb moisture. failure to adhere to the above assembly instruction can l ead to device failures not covered by m-systems' warranty. note: diskonchip 2000 dip requires a dip socket on th e target platform. due to its plastic shell and molding material, it cannot be soldered directly to the platform. 8.1.3 humidity 10% - 90% relative, non-condensing 8.1.4 shock and vibration table 1: reliability tests reliability test test conditions reference standard vibration 100hz~2000hz, 15g peak, 3 cycles per axis (1hr.), 3 axes std-202f, method 204d mechanical shock half sine shock 50g, 11msec, +/-3 shock per axis, 3 axes std-202f, method 213b 8.2 electrical specifications 8.2.1 absolute maximum ratings table 2: maximum ratings parameter symbol 3.3v model rating 1 5v model rating 1 units notes dc supply voltage v ccs -0.5 to 4.6 -0.3 to 6.0 v input pin voltage 2 v in -0.5 to v cc + 0.3 -0.3 to v cc + 0.3 v input pin current i in not specified -10 to 10 ma +25 c 1. permanent device damage may occu r if absolute maximum ratings ar e exceeded. exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. the voltage on any pin may undershoot to -2.0v or overshoot to vcc+2.0v for periods <20ns. 8.2.2 capacitance table 3: input/output capacitance symbol parameter conditions 3.3v model rating 5v model rating unit md2200/2, v in = 0v 12 15 pf c i/o input/output capacitance MD2203, v in = 0v 36 45 pf
diskonchip 2000 dip data sheet 19 data sheet, rev. 3.7 91-sr-002-42-8l note: capacitance is not 100% tested. 8.2.3 dc electrical characteristics over operating range table 4: vcc = 5v characteristics symbol parameter conditions min typ max unit v ccs system supply voltage 1 4.5 5.0 5.5 v v ih high-level input voltage 2.0 v v il low-level input voltage 0.8 v v oh high-level output voltage i oh = -16ma 2.4 v v ol low-level output voltage i ol = 16ma 0.4 v md2200, md2202 10 a i il input leakage current MD2203 30 a md2200, md2202 10 a i oz output leakage current MD2203 30 a i vcc supply current 200ns cycle time, outputs open 40 60 ma md2200, md2202 60 400 a i stdby standby current MD2203 240 1200 a note: the supply voltage of the extended temperature products listed below is vcc = 5v 0.25v: md2202-d192-x, md2202-d256-x, md2202-d384-x, MD2203-d576-x, MD2203-d768-x, MD2203- d1024-x table 5: vcc = 3.3v characteristics symbol parameter conditions min typ max unit v ccs system supply voltage 1 3.0 3.3 3.6 v v ih high-level input voltage 2.7 v v il low-level input voltage 0.6 v v hys input voltage hyster esis 1.1 1.5 v i oh = -18ma 2.4 v v oh high-level output voltage i oh = 0ma vcc-0.1 v i ol = 18ma 0.4 v v ol low-level output voltage i ol = 0ma 0.1 v md2200, md2202 10 a i il input leakage current MD2203 30 a md2200, md2202 10 a i oz output leakage current MD2203 30 a i vcc supply current 150ns cycle time, outputs open 30 60 ma md2200, md2202 70 400 a i stdby standby current MD2203 300 1350 a note: the supply voltage of the extended temperature products listed below is vcc = 3. 3v 0.15v: md2202-d192-v3-x, md2202-d256-v3-x, md2202-d384-v3-x, MD2203-d576-v3-x, MD2203-d768- v3-x, MD2203-d1024-v3-x
diskonchip 2000 dip data sheet 20 data sheet, rev. 3.7 91-sr-002-42-8l 8.2.4 ac operating conditions timing specifications are based on the following conditions: table 6: ac operating conditions parameter 3.3v model 5v model supply voltage 1,2 v cc = 3.3v 0.3v v cc = 5v 0.5v input pulse levels 0.2v to 2.9v 0.4v to 2.6v input rise and fall times 1ns 5ns input and output timing lev els 1.5v 0.8v and 2.0v output load 100 pf 50 pf 1. the supply voltage of the extended temperature products listed below is vcc = 3. 3v 0.15v: md2202-d192-v3-x, md2202-d256-v3-x, md2202-d384-v3-x, MD2203-d576-v3-x, MD2203- d768-v3-x, MD2203-d1024-v3-x 2. the supply voltage of the extended temperature products listed below is vcc = 5v 0.25v: md2202-d192-x, md2202-d256-x, md2202-d384-x, MD2203-d576-x, MD2203-d768-x, MD2203-d1024-x
diskonchip 2000 dip data sheet 21 data sheet, rev. 3.7 91-sr-002-42-8l 8.3 timing specifications 8.3.1 read cycle timing ce# a[0..12] oe# d[0..7] we# t su (a) t en (d) t ho (ce1) t su (ce0) t ho (ce0) t su (ce1) t rec t acc t dis (d) figure 8: read cycle table 7: read cycle timing 3.3v 5v symbol description min (ns) max (ns) min (ns) max (ns) notes t su (a) address to oe# setup 2 10 t ho (a) oe# to address hold 35 56 t su (ce0) ce# to oe# setup 0 0 1 t ho (ce0) oe# to ce# = 0 hold 0 0 2 t ho (ce1) oe# or we# to ce# = 1 hold 8 42 t su (ce1) ce# to we# or oe# setup time 8 42 t rec oe# to start of next cycle 20 59 t acc read access time 110 130 t en (d) oe# to d active delay 15 75 7 91 t dis (d) oe# to d hi-z delay 13 44 1. ce# may be asserted any time before or after oe# is asserted. if ce# is asserted after oe#, all timing relative to oe# asserted will be referen ced instead to the time ce# was asserted. 2. ce# may be negated any time before or after oe# is negated. if ce# is negated before oe#, all timing relative to oe# negated will be referenced instead to the time ce# was negated.
diskonchip 2000 dip data sheet 22 data sheet, rev. 3.7 91-sr-002-42-8l 8.3.2 write cycle timing ce# t w (we) oe# we# a[0..12] t ho (a) t su (a) t ho (ce1) t ho (ce0) t su (d) t ho (d) t rec t ho (ce0) t su (ce1) d[0..7] figure 9: write cycle table 8: write cycle timing 3.3v 5v symbol description min (ns) max (ns) min (ns) max (ns) notes t su (a) address to we# setup time 0 10 t ho (a) we# to address hold time 35 56 t w (we) we# asserted width 62 98 t su (ce0) ce# to we# setup time 0 0 1 t ho (ce0) we# to ce# = 0 hold time 0 0 2 t ho (ce1) oe# or we# to ce# = 1 hold time 8 42 t su (ce1) ce# to we# or oe# setup time 8 42 t rec we# to start of next cycle 22 59 t su (d) d to we# setup time 50 48 t ho (d) we# to d hold time 0 40 1. ce# may be asserted any time before or after we# is asserted. if ce# is asserted after we#, all timing relative to we# asserted will be referenc ed instead to the time ce# was asserted. 2. ce# may be negated any time before or after we# is negated. if ce# is negated before we#, all timing relative to we# negated will be refere nced instead to the time ce# was negated.
diskonchip 2000 dip data sheet 23 data sheet, rev. 3.7 91-sr-002-42-8l 8.4 mechanical dimensions figure 10: md220x mechanical dimensions table 9: low-profile md2200 md2202 millimeters (max.) millimeters (max.) a 41.9 43.95 b 18.05 18.3 c 2.54 2.54 d 15.24 15.24 e 5.7 6.0 f 4.0 4.0 g 0.51 0.51 h 38.2 38.2 table 10: high-profile MD2203 millimeters (max.) a 45.6 b 18.8 c 2.54 d 15.24 e 13.5 f 4.0 g 0.51 h 38.2 note: the above dimensions are maximum values.
diskonchip 2000 dip data sheet 24 data sheet, rev. 3.7 91-sr-002-42-8l 9. ordering information md2200-dcc-v-t (low-profile) cc: capacity (mb) 24 v: supply voltage blank v3 5v 3.3v t: temperature range (optional) blank x commercial: 0c to +70c extended: -40c to +85c md2202-dccc-v-t (low-profile) cc: capacity (mb) 16, 32, 48, 64, 96, 128, 192, 256, 384 v: supply voltage blank v3 5v 3.3v t: temperature range (optional) blank x commercial: 0c to +70c extended: -40c to +85c MD2203-dccc-v-t (high-profile) ccc: capacity (mb) 576, 768, 1024 v: supply voltage blank v3 5v 3.3v t: temperature range (optional) blank x commercial: 0c to +70c extended: -40c to +85c
diskonchip 2000 dip data sheet 25 data sheet, rev. 3.7 91-sr-002-42-8l how to contact us website: http://www.m-sys.com general information: info@m-sys.com technical information: techsupport@m-sys.com usa m-systems inc. 8371 central ave, suite a newark ca 94560 phone: +1-510-494-2090 fax: +1-510-494-5545 taiwan m-systems asia, ltd. room b, 13 f, no. 133 sec. 3 min sheng east road taipei, taiwan r.o.c. phone: +886-2-8770-6226 fax: +886-2-8770-6295 japan m-systems japan inc. asahi seimei gotanda bldg., 3f 5-25-16 higashi-gotanda shinagawa-ku tokyo, 141-0022 phone: +81-3-5423-8101 fax: +81-3-5423-8102 china m-systems china ltd. 25a international business commercial bldg. nanhu rd., lou hu district shenzhen, china 518001 phone: +86-755-519-4732 fax: +86-755-519-4729 europe and israel m-systems flash disk pioneers ltd. 7 atir yeda st. kfar saba 44425, israel phone: +972-9-764-5000 fax: +972-3-548-8666 ? 2002 m-systems flash disk pioneers, ltd. all rights reserved. this document is for information use only and is subject to cha nge without prior notice. m-systems flash disk pioneers ltd. ass umes no responsibility for any errors that may appear in this document. no part of this document may be reproduced, transmitted, transc ribed, stored in a retrievable manner or translated into any language or comput er language, in any form or by any means, electronic, mechanic al, magnetic, optical, chemical, manual or otherwise, without prior written consent of m-systems. m-systems products are not warranted to ope rate without failure. accordingly, in a ny use of the product in life support systems or other applications where failure could cause inju ry or loss of life, the product should only be incorporated in systems designed with appropriate and sufficient redundancy or backup features. contact your local m-systems sales office or distributor, or visit our website at www.m-sys.com to obtain the latest specifications before placing your order. diskonchip ? , diskonchip millennium plus ? , trueffs ? and diskonkey ? are registered trademarks of m-systems. ffd? and supermap? are trademarks of m-systems. othe r product names mentioned in this document ma y be trademarks or registered trademark s of their respective owners and are hereby acknowledged.


▲Up To Search▲   

 
Price & Availability of MD2203

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X